theWord Book modules specifications

Document revisions:
· Jan 15, 2011: version 3.2.1+: link-topics paragraph added

· May 22, 2012: version 3.2.1.1298+: calendar support for devotional modules

· May 31 2012: version 3.2.1.1303+: custom date format strings for devotional modules specific topics (using the topics_flags table).

· Mar 29, 2014: added section for hybrid modules

· May 5, 2014: added devotion.force.sync option
Non-Bible modules specifications
All non Bible modules are sqlite3 database files, ending with .twm (the word module). Familiarity with basic database knowledge is required (a database is a repository where the data are organized in tables) if you want to modify these files at a low level. There are several free tools to do this, I can recommend the following 2:
1. sqliteExplorer: http://www.singular.gr/sqlite/
2. SQLiteSpy: http://www.yunqa.de/delphi/doku.php/products/sqlitespy/index

There are some common tables among most of these files. There are 4 main module types: dictionaries, commentaries, general books, map/image files. Although the extension of each of these modules is different, the actual type of the module is determined by an entry (type attribute) in the internal config table (and not by their actual extension).

All string data are in utf8 encoding. For the actual content, rtf or rvf is used.
On startup, TW searches through a list of known paths to locate all module files with the extension .twm. By default, the path where the program is located (the theword.exe file) is searched and all it’s subfolders.

“config” table

The config table has 2 columns: name and value. This table contains all configuration and meta-information of the module. All text (except for the about property) is utf8 encoded.
The config table should contain at least an entry with name=’type’ and value=[1-4]. This entry decides the format of the file. For:

· dictionaries: type=1

· commentaries: type=2

· Books: type=3

· Maps: type=4
Common config values (config table):

type: determines the type of the module (possible values 1, 2, 3, 4: see above).

abbrev: utf8-encoded: abbreviation that is used for tabs and other place in the program. This can be set by the user. Used in the program in the Book view at the tab of the module.
title: utf8-encoded: title of the module.
description: utf8-encoded: description (tip when mouse hovers over the tab and other places)
title.english: utf8-encoded: english translation of the title field that is used for the installers. PLEASE, provide and don’t leave it empty if you module is a non-English one. For english modules, leave this field empty

about: This is a properly RTF or html (preferably rtf) formatted document (you may use Wordpad to create it, or OpenOffice Write or MS Word or TW itself). It can also be a utf8 string. It can contain any text about copyright, about, permissions, notes, etc. Completely free form
user: 1 if this a use module

schema.version: [number] used internally for the version of the db schema

content.type: [string] (rtf, rvf, jpg, etc). The global content type. If a topic does not have a specific content type, this one is assumed. By default, user modules have ‘rvf’ as content type, and non-user module have ‘rtf’ as content type.

id: the module id. This is a unique identifier among all other TW modules. It is important that this attribute is present at least for the official TW modules. There will be a way to request and get unique IDs officially (refer to the forum pls http://forum.theword.gr). If an id is not present, the program will use the filename as the ID. Notice that links that refer to this module usually use this unique ID.
auto.detect.vrefs: set to 1 if you want to automatically detect vrefs every time a topic is displayed. This option is not a good one. Usually, you can execute a specific action that will automatically detect and save the detected references in the module.
strong: 1 if this is a Strong's module (requires the strong_orig_word column in topics table and an index in topics.subject column)

morph: 1 if this is a morphology module
preserve.fonts: 1 if the module fonts are used, 0 if default book view fonts are used.
preserve.fonts.list: [comma list of fonts names] this is a list of font names that are used in the module that should not be replaced with the ‘default book view font’. This is very useful if the module has some parts with a specific font (e.g. courier) that should NOT be changed to the default user font. Whether or not there is font substitution depends on preserve.fonts property above.
version.major: major module version. You should change this when major changes occur in the module. Usually, an increase in a major module version means that the new module differs significantly from the previous one
version.minor: minor module version. You should change this every time an update is made to the module, no matter how small. Even a comma is enough to change this.
version.date: date of last revision of this electronic form. This date should be changed each time the version.major or version.minor is changed

requires: minimum version number of the program required to properly display this module. Version number is a string in the format A.B.C.D (e.g. 3.0.0.702)
r2l: 1 if the module should right-to-left aligned globally. This can be set on a per topic/paragraph case (todo: the option is not there yet from within TW editor).

no.greek.hebrew.color: 1 if you don’t want the Greek and Hebrew text to be rendered with a special color. BY default Greek and Hebrew is rendered with dark red color (applies only to rtf content).
show.book.popups: if 0, no popups for books are displayed for this module. If 1, they are always displayed. If other value or not present, the default options for the book view are used.

author: The author of the original work. Can be more than one separated by semi-colon. Please, use standard naming in order to be able to search from within the program. Refer to the site to find standard names for authors. Last name should be first, followed by comma, then first name, then middle name. For example:

Darby, John N.

Henry, Matthew

Calvin, John

Clarke, Adam C.

Kelly, William

Smith, Hamilton

Gill, John

lang ISO639-2 language id. You may also use the ISO639-1 codes, but please prefer the ISO639-2 ones (3 letters instead of 2). You can find the list here: http://www.loc.gov/standards/iso639-2/php/code_list.php
categories: List of categories separate by semi colon (very general for now, clarify)
keywords: list of keywords separated by semi colon. Will be searchable in the future (clarify, examples)
publish.date: the original date of publishing of this work. This is NOT the date that this module was created, but the date (year) that the original content was written from the original author.
publisher Publisher of the resource (if applies or known)

isbn if exists: the ISBN of the printed edition of this work
creator name of the one that created this module (including emails if possible)

contributors people that worked on it (including emails if possible)

source the original source of this electronic form. Please, refer to original site, or other resource from which this resource was made.

editorial.comments Comments about editorial practices: whether spelling was normalized, what was done with end-of-line hyphens, corrections that were made, tagging practices, etc.
status Current status of text—e.g. This text still needs proofreading
nfmdid ‘non-free module id’. This is an id that uniquely identifies a non-free module. Non-free modules are only official modules, so the generation of this id is not detailed here. You should not change or remove this entry, or the module will not work properly. This value is 12-bytes in hex format, e.g. 24 16-base digits.
images.allow.autoresize if not 0, then a button will appear in the book view toolbar that allows the user to select image auto-resizing for the viewer for this module. Notice that images with width or height less than 20 pixels are NOT auto-resized, unless explicitly set on the image.
search.topics.no.autobuild is set to 1, then the topics_wordindex table (if it exists) will never be rebuild automatically (this table will be rebuild automatically for a non-user module only if a newer version of theWord brings new functionality and requires a rebuild of this table). If, for any reason, you have custom-build this table and you don’t want this to happen, set this attribute to 1.
Content type of content table:

In the content table the actual contents of the module are stored. To decide the content type in the module (per topic):

1. Check the content_type column in the topics/bible_refs table. If empty, the default content type is assumed

2. The default content type is decided bases on the value of the content.type value in the config table (see above).

Currently supported content types:

rtf: standard rtf (produced by WordPad, Word, etc)

rvf: native TW format. Created by TW itself

bmp, jpg, gif, ico, emf, wmf: picture formats supported
	Column name
	Type
	Description

	topic_id
	integer
	Cannot be 0 or -1

	type
	Ansii string
	Possible values: rtf, rvf, bmp, jpg, jpeg, gif, ico, emf, wmf

“content_orig” table

This table stores the original content of non-user modules. In non-user modules it is allowed to format the text to add highlighting. If the end-user changes the content, then the original content is stored in this table in order to be restorable.

	Column name
	Type
	Description

	topic_id
	integer
	Primary key – Cannot be 0 or -1

	data
	blob
	Actual content. Content type is determined by topics.content_type column (if this is a dictionary) or by bible_refs.content_type column (if this is a commentary)

	content_type
	text
	Original content_type (copied from bible_refs or topics table

This is a table that should only be created from within theWord itself (it is not intended for module creators)
Dictionaries files

Default extension: .dct.twm

Primary tables used: config, topics, content (see at the end for table specification).

Secondary tables used (auto-maintained): topics_wordindex. This table is for searching through the topic contents.
There are special types of dictionaries used for Strong’s indices and Greek morphology data. Strong dictionaries, have the entry strong=1 in the config table. Morph dictionaries have the entry morph=1.

Books
topics_tree table - DEPRECATED
This table only exists if the book has a hierarchical structure. For flat books, this table does not exist.

If this table exists then it is a superset of the topics table. This means, that for every entry in the topics table, a corresponding entry in this table should exist. More entries can exists in this table for nodes that are used for grouping only.
	Column name
	type
	Description

	topic_id
	integer
	If the topic_id is a foreign key to the topics table, then a match is assumed. If not, then this defines a grouping only node. The subject column is used from this table only if this is a grouping only node. This should not be 0 or -1 (can be negative).

	topic_pid
	String, utf8 encoded
	Id of the parent node. If this is a root node, this should be 0.

	rel_order
	
	Any valid integer. Siblings are sorted with this value. Does not need to be 1, 2, 3, … Can be any number

	Subject
	
	If this is a group only node (e.g. there is no entry in topics table) then this is used as the subject. If both tables have entries, then the topics.subject is used (and not this one). So, this should be empty for nodes that also exist in the topics table

If a topic exists in the topics table but not in the topics_tree table, then it is added as a first level node (root node) at the end of the tree. This is invalid (e.g. error) but it is implemented in order to be able to find such errors. To fix it, the following SQL must be run:
 insert into topics_tree(topic_id, topic_pid, rel_order, subject)

 select id,0,0,'' from topics

 except

 select topic_id,0,0,'' from topics_tree

Table specification

topics

	Column name
	type
	Description

	id
	integer
	Unique id for topic. Cannot be 0 or -1. Also, cannot be negative (grouping will fail)

	pid
	integer
	Parent id when there is a hierarchy. Default=0

	subject
	String
	Topic subject (utf8)

	rel_order
	Integer
	Numbers are random, but represent display order. This column should have valid numbers

	Content_type
	text
	rtf, rvf, gif, jpg, bmp, jpeg, wmf. If empty, then the content_type in the config table is used. If no entry there then ‘rtf’ is default for non-user modules, ‘rvf’ is the default for user modules.

	strong_orig_word
	text
	This column only exists in strong dictionaries (type=1 and strong=1). Contains the original word for the corresponding strong index

The id=0 or id=-1 should NEVER be used. It will corrupt the module. The program will crash.
The id is the primary key (unique)

The topics are sorted on the id value. For commentaries, the sorting is based on the book/chapter/verse (see bible_refs table)

If the strong_orig_word column exists, then it is important to have a secondary index on the ‘subject’ column: “CREATE INDEX idx_topics_subject on topics(subject);”
Commentaries

The bible_refs table exists in place of the topics table.
Preparations for module publishing

1. Check that the search index can be created without errors

2. Check that the idx_topics_rel_order exists in modules (CREATE INDEX idx_topics_rel_order on topics(rel_order))
3. Check that idx_topics_subject exists if this is a strong module (CREATE INDEX idx_topics_subject on topics(subject))
Table fonts

	Column name
	type
	Description

	Fontname
	text
	This is the filename of the font. No paths, just the filename (e.g. olbheb.ttf)

	data
	blob
	This is the actual content of the font file (binary)

A module may have any number of embedded fonts. One record for each font.
General - flags
Table topics_flags (ver. 3.0.0.715+, added: 2008-11-21).
create table topics_flags(id integer primary key, hidden int)

Notice that this table is optional and may not exist.

Also, the only ‘needed’ column is id. All other columns can be added arbitrarily and if they do not exist no error occurs, but the corresponding functionality is absent (to help with backwards compatibility and avoid unnecessary joins in the code)
Hiding entries
The hidden column is used in the topics_flags table.
	Column name
	type
	Description

	id
	integer
	Primary key; foreign key other tables

	hidden
	integer
	If this is 1 then this topic is hidden (notice that null or any other value means ‘not-hidden’, also absent of a topic_id means ‘not-hidden’)

Notes on hidden topics:
‘Hidden topics’ is an advanced feature and is ONLY used in order to create some topics to be used as popup entries but be invisible in the list of topics. Hidden topics will not be searched. The only way to see/access them from within TW is via hyperlinks. Notice that to access them in hyperlinks, their topic ids need to be known (e.g. the tid parameter should be present in the url). If you create hyperlinks from within TW make sure that in the ‘Hyperlinks’ dialog you check the ‘User topic id instead of the topic…’ checkbox (necessary for commentaries since there is no other way to reference them after they are made hidden – read below). Take special care for commentaries to use topic_ids that do not conflict with existing topic_ids in the bible_refs table
Topics can become hidden ONLY by direct manipulation of the .twm file. The only thing that can be done from within TW is to set the ‘Show hidden topics’ from the module properties, and this applies ONLY to dictionaries and books (hidden topics in commentaries cannot even be displayed).
· For dictionaries and books: In order for a topic to be hidden, an entry must exist in the topics_flags table and the hidden column should have the value of 1. So, to make a topic hidden, just add one record in the topics_flags table (e.g. insert into topics_flags(id, hidden) values([topic_id], 1) where [topic_id] is the id of the topic. Practically, to work with hidden topics just create your module the normal way by creating and linking as always.
· For commentaries: because no duplicate entries are allowed in bible_refs, hidden topics have only entries in the content and topics_flags tables. Don’t forget to add the entry in topics_flags or the entry will appear in search results (expect strange behavior). This might change in a future version to add more complete support for hidden topics in commentaries. Notice that in this case, the actual content type is determined by examining the content itself since there is no content_type column/info in another place.

In order to create a hidden commentary entry, do the following:

a. Create an entry from within TW for any verse/book/chapter (only the content is of interest, so just selected a verse that no other comment exists for now)

b. Use TW to normally edit this topic, create bookmarks, etc. Create links to it from other topics.

c. Find the Topic ID of the topic you want: click on the ‘Book topics’ tree on the topic of interest and hit CTRL+ALT+INSERT on the keyboard: a message box appears with the topic id.

d. When done issue the following sql commands (make sure the topics_flags table exists, or else create it with the create command shown above):
a. delete from bible_refs where topic_id=[topicId];
b. insert into topics_flags(id, hidden) values([topicId], 1);
c. delete from content_search where topic_id=[topicId]; --only if the content_search table exists.
e. Deleting the bible_refs record makes this entry invisible and actually leaves only the entry in the content table which is accessible in hyperlinks directly.

Topics that act as anchors/links – link-topics (version 3.2.1+)

It is possible to have a topic that does not have its own content but instead ‘links’ to another topic. In order to support this, a new content.type has been added called ‘meta’. Topics of this type must:

1. Have the content.type column (in topics table) set to the value ‘meta’.

2. The data in the content table should be a meta record. A meta record is defined as follows:

a. A set of name=value properties, each on a new line (separate by CR+LF)
b. The first line must be meta=_twmgc_ (exactly like that)

For a meta record that points to another topic, the following name/value pairs are used:
type=link

id=<linked topic id>

anchor=<bookmark/anchor in linked topic, optional>

Notice: both conditions 1 and 2 above must be true for link-topics to work properly. Inconsistencies in the db will lead to unexpected results.

For example, the data column of the content table for a link-topic should look like this:

meta=_twmgc_

type=link

id=3

anchor=bkm1

In the above example, 3 is the id of the topic this one links to, and anchor an (optional) bookmark/anchor defined in this target topic.

The following rules apply for link-topics:

1. They cannot be created from within theWord: they must be created with direct sql manipulation. This implies that they should be mostly used for non-user modules.
2. All operations that are made to link-topic (e.g. highlighting, content update, verse-ref detection) are internally applied to the linked topic instead. So, in normal conditions, a link-topic (having been created with direct sql manipulation) cannot be changed at all from within theWord (except for 3, see below).
3. When copying link-topics from one module to another (using drag-n-drop) from within theWord, the link-topics are not really copied, instead the actual linked copied content is. Be very careful with this operation since it is the only case in which link-topics are not preserved.
4. When searching, link-topics do not appear in the search results for content-search: instead, their linked topics appear. When searching topic-subjects, then link-topics can/will appear

5. When displaying a link-topic in the Book view, the display is not updated if the current topic is the same with the linked-to topic. If an anchor is defined in the link-topic, the display scrolls appropriately.
6. A bookmark icon appears in the topics-tree for link-topics.

7. Changing module content-type (from rvf to rtf, etc) should have no effect on link-topics.

Reading Plan Modules

ToBeWritten
Devotional Modules (ver 3.2.1.1298+)
There is no special format for devotional modules. Their extension is usually .dev.twm, but this is only for identifying purposes, it’s not used anywhere within theWord. Any non-commentary module can act as a devotional module. What makes a Devotional Module is the existence of an extra table, named devotion.

The devotion table has the following columns:

	Column name
	type
	Description

	topic_id
	integer
	Foreign key to topics.id

	monthOfYear
	integer
	The month of the year. Jan=1, Feb=2, … Dec=12

This column may be null if the devotion is only for a single month

	dayOfMonth
	Integer
	From 1 to 31.

	morningOrEvening
	boolean
	If it is null, then there is no difference for morning or evening devotional readings. True for morning, false for evening (notice that in sqlite, true is denote by the value 1, false by the value 0 –there are not Boolean literals true and false)

The create statement of this table is the following:

CREATE TABLE devotion(topic_id int,

 monthOfYear int,

 dayOfMonth int,

 morningOrEvening boolean);

CREATE INDEX idx_devotion_topic_id ON devotion(topic_id);
If this table exists and has at least one record, then the module is considered a Devotional Module. Devotional modules:

1. Have a calendar icon on the topics toolbar

2. Can take part in the Daily Readings function/dialog
3. Their actual subject for those topics that have an entry in the devotion table may be synthesized automatically with a stringified version of the actual calendar date. This is optional and depends on the devotion.subject.format parameter.

The following sample sql statements can be used to automatically generate the devotion table for a book module where the topics have some subjects that correspond to the format ‘dd AM MMM’ (e.g. 01 AM Jan) – the module Spurgeon’s Morning and Evening is such a module. Only topics with a parent-topic are considered in this example.
DROP TABLE IF EXISTS devotion;

CREATE TABLE IF NOT EXISTS devotion(topic_id int,

 monthOfYear int,

 dayOfMonth int,

 morningOrEvening boolean);

CREATE INDEX IF NOT EXISTS idx_devotion_topic_id ON devotion(topic_id);

DELETE FROM devotion;

INSERT INTO devotion(topic_id, dayOfMonth, monthOfYear, morningOrEvening)

 SELECT

 id,

 substr(subject, 1, 2) dayOfMonth,

 CASE substr(subject, 7, 3)

 WHEN 'Jan' THEN 1

 WHEN 'Feb' THEN 2

 WHEN 'Mar' THEN 3

 WHEN 'Apr' THEN 4

 WHEN 'May' THEN 5

 WHEN 'Jun' THEN 6

 WHEN 'Jul' THEN 7

 WHEN 'Aug' THEN 8

 WHEN 'Sep' THEN 9

 WHEN 'Oct' THEN 10

 WHEN 'Nov' THEN 11

 WHEN 'Dec' THEN 12

 END monthOfYear,

 CASE substr(subject, 4, 2)

 WHEN 'AM' THEN 1

 WHEN 'PM' THEN 0

 END morningOrEvening

 FROM topics WHERE pid <> 0;
/* The following statemenets create entries for the month group topics. See Special format string for specific topics section below. */

 CREATE TABLE IF NOT EXISTS topics_flags(id int, dev_dyna_subject text);

 CREATE INDEX IF NOT EXISTS idx_topics_flags_id on topics_flags(id);

 DELETE FROM topics_flags WHERE dev_dyna_subject is not null;

 DROP TABLE IF EXISTS tmp_ids;

 CREATE TABLE tmp_ids AS

 SELECT * FROM topics WHERE pid=0 AND id IN (SELECT DISTINCT(Pid) FROM topics WHERE pid<>0) ORDER BY rel_order;

 INSERT INTO topics_flags SELECT id, "MMMM" FROM tmp_ids;

 DELETE FROM devotion WHERE topic_id IN (SELECT id FROM tmp_ids);

 INSERT INTO devotion(topic_id, monthOfYear, dayOfMonth) SELECT id, rowid, 1 FROM tmp_ids;

 DROP TABLE IF EXISTS tmp_ids;
The following extra properties can be used in the config table for devotions:

· devotion.subject.format: sets the format of the actual subject for those topics that have a calendar date. By default, when a topic is linked to a calendar date, its subject is the date in the format d MMM 'ampm'. Actually, the default value of this property is exactly this d MMM 'ampm'. (notice: you can have special format string for individual topics if required, see the section Special format string for specific topics below)

You may set this property to a custom date format using the following rules:

1. The actual format follows the GetDateFormat windows function (see here http://msdn.microsoft.com/en-us/library/windows/desktop/dd317787(v=vs.85).aspx for details on accepted format strings).

2. Moreover, 2 extra special format specifiers are supported, the 'ampm' and '%s' (including the single quotes)

a. The 'ampm' refers to the AM or PM time marker. It can either be lower case (e.g. 'ampm') or upper case (e.g. 'AMPM'), in which case the actual time marker will also be lower or upper case. The time marker is the Window's default, according to the current language/locale.

b. The '%s' refers to the actual subject of the topic. This can be used either alone or in combination with a date format.

· devotion.time.am: you can set this property to provide a custom morning/evening time name, inplace of the default ones (AM and PM for English)

· devotion.time.pm: same as above, this is the PM (or evening) word.
· devotion.force.sync: by default, devotionals do not participate in synchronization events as other dictionaries/books do (version 4.0.0.1408+). To enable the synchronization you need to set this property to 1. Notice that before version 4.0.0.1408 this behavior was on by default.

Examples:
· devotion.subject.format='%s'
This means that the subject displayed will be the actual subject of the topic.

· devotion.subject.format=d MMM 'ampm'
This is the default one. Example subjects:

· 1 Jan am

· 21 Aug pm

· devotion.subject.format=dd 'AMPM' MMMM
Example subjects:
· 01 AM January
· 21 PM August
· devotion.subject.format=dd MMM '(%s)'
Example subjects:

· 01 Jan (<existing_subject>)

· 21 Aug (<existing_subject>)
where <existing_subject> is the actual subject of the topic.
· devotion.subject.format=dd 'AMPM'
devotion.time.am=Morning
devotion.time.pm=Evening
Example subjects:
· 01 Morning

· 21 Evening

 Notice that the words Morning and Evening are used in place of AM and PM.

 Also, no upper/lower case conversion takes place, no matter if 'AMPM' or 'ampm' is used.
Special format string for specific topics
If you need to have special format string for some of the topics, the topics_flags table can be used (this is usually for topics that act as group nodes, e.g. January, February, etc). The column dev_dyna_subject of the topics_flags table may contain a format string that can be used for the specific topic (remember, that the topics_flags is a special table that can have any number of columns, yet only the columns required for a specific function need to be present for this function to work). The following SQL commands may create the topics_flags table with the required dev_dyna_subject column:

create table topics_flags(id int, dev_dyna_subject text);

create index idx_topics_flags_id on topics_flags(id);
Example:

Let’s suppose that a devotional has group nodes for the months (January, February, etc). In order to have the names of these months dynamic (e.g. localizable), the following entries are required:

1. In the devotion table, a row with the topic_id and the monthOfYear that corresponds to the month (the dayOfMonth column value is irrelevant)

2. A row in the topics_flags table where the dev_dyna_subject will have the value MMMM.

Hybrid modules
Hybrid modules are dictionary and book modules that contain extra information in a way that make it possible to synchronize them to Bible verses. You can think of them as a combination of book plus commentary modules. Their internal structure is actually that of a book module plus an extra table that provides the necessary information to synchronize their topics to bible verses. The extra table that is used for the synchronization of topics to verses is called rel_refs (stands for “relative verse references”).

Apart from the extra rel_refs table, hybrid modules must have the property verse.sync with value 1 in the config table, you may insert this value with the following SQL statement:
insert into config(name, value) values('verse.sync', 1);

You can create the rel_refs table with the following SQL statement:

CREATE TABLE rel_refs(
 id integer primary key AUTOINCREMENT,
 topic_id integer,
 topic_pos text,
 rel_order int,
 fbi integer,
 fci integer,
 fvi integer,
 tci integer,
 tvi integer,
 link_type integer default 0);

Each row in the rel_refs table links a topic of the book with a verse or verse range. The topic_id column represents the id of the topic to be linked and the fbi, fci, fvi, tci, tvi represent the verse or verse range that this topic is linked to. Notice that the verse range can span more than one chapters of the same book (so there is only a single book index, but 2 chapter indexes).
The meaning of the columns are:
	Column name
	type
	Description

	topic_id
	Integer
	Foreign key to topics.id table.column

	topic_pos
	Text
	This is the position in the topic that corresponds to the verse. The format of this field is very specific and will be discussed below.

	rel_order
	Integer
	The relative order of the link in the topic, if there are more than one (just use 1 for now)

	fbi, fci, fvi, tci, tvi
	Integer
	f stand for from, t for to, b for book, c for chapter, v for verse, i for index. So:
fbi is the book index (1 through 66)

fci is the starting chapter of the book

tci is the ending chapter of the book

fvi is the starting verse of the book+starting chapter

tvi is the ending verse of the book+ending chapter

	link_type
	Integer
	For now, this value should be 1

topic_pos column format

The format of the topic_pos field is designed to be generic enough, in order to accommodate future additions, yet as of this version, the supported format is quite specific:
· If you leave this field empty, then the whole topic is linked with the specific verse

· If you want to specify a position within in the topic, the only supported way at the moment is by using bookmarks. So, you first need to define a bookmark in the topic content itself and then put in that field the value bkm:<bookmark_name>.

· Although any bookmark name in your topics can be used as an ‘anchor’ (or target), a special bookmark name format should be used, for which theWord provides extra functionality. This format is RELREF_<fbi>_<fci>_<fvi>_<tbi>_<tci>_<tvi>. The last three arguments are optional if this reference is for a single verse and not a range. For example:

· for Gen 3:5 a proper bookmark name would be RELREF_1_3_5
· for John 3:16-18 a proper bookmark name would be RELREF_43_3_16_43_3_18
Some notes that may not be obvious from the comments above:
· You may (and in most cases you will) have more than one records in the rel_refs table that point to the same topic but have different bookmark targets within than same topic, since they link to a different verse.

· Do not think of verse synchronization only in terms of the Bible view (where the ‘event’ that produces the synchronization is always a single verse’), but also take into consideration synchronization with other commentaries. So you should add records in the rel_refs table that may span a whole book or chapter or other relevant ranges, as well as have more specific verse targets at the same time. For example, you may have a verse target for the whole chapter of John chapter 3 (where this refers to the introduction), and then have specific comments for each verse separately.
Synchronization with other views

While the rel_refs table is used to synchronize the hybrid module with the other views and events, there is also the aspect where the hybrid module itself is used as the source for synchronizing the rest of the views.
This synchronization is currently used to mark other modules (commentaries) that have a comment on the same verse while the user is reading a hybrid module. Since a hybrid module supports the linking of more than one verses in the same topic, the synchronization evens can be emitted either when the user changes topics or when he scrolls through a long topic and bookmarks that are linked to the rel_refs table become visible. There is special handling here for bookmarks whose name starts with RELREF_. The exact order by which the synchronization events are emitted from a hybrid module are:
· Iterate through all the currently visible bookmarks of the topic

· If the bookmark name starts with RELREF_, then try to parse the book/chapter/verse (range) (BCV) from the rest of the bookmark name (e.g. RELREF_1_1_1 refers to Gen 1:1). If the parsing is correct then emit the sync event for this BCV and stop.

· If the bookmark name does not start with RELREF_, then look into the rel_refs table and see if for this topic_id there is a topic_pos entry with this bookmark name (e.g. the topic_pos should match the bkm:<bookmark_name>). If yes, then read the BCV from this row in the rel_refs table and emit the sync event for this BCV and stop.

· Repeat previous 2 steps until all visible bookmarks are checked.

The above procedure reveals an interesting (but maybe not so useful) function: the reverse-synchronization of hybrid modules can be made with no records in the rel_refs table, just by adding properly formatted bookmarks in the topics. Another side-effect of this feature would be that one could create hybrid modules where the BCV of the rel_refs table is different than the one encoded in the bookmark name, thus making the synchronization and reverse-synchronization inconsistent: obviously this is up to the module maker to verify.
Commentary links
Hybrid modules can work as standard commentaries and appear as commentary links in a Bible view. The rel_refs table is used to lookup the topics that correspond to each verse. Entries that correspond to more specific ranges are preferred if more than one records exist for the same verse (before version 4.0.0.1404, commentary links for a hybrid module would only show up if the topic_pos column had a bookmark name that started with RELREF_: this restriction has been removed since it is not really needed).
